What is the derivative of tan^7(x^2)tan7(x2)?

1 Answer
Aug 14, 2017

d/(dx) [tan^7(x^2)] = color(blue)(14xtan^6(x^2)sec^2(x^2)ddx[tan7(x2)]=14xtan6(x2)sec2(x2)

Explanation:

We're asked to find the derivative

d/(dx) [tan^7(x^2)]ddx[tan7(x2)]

We can first use the chain rule:

d/(dx) [tan^7(x^2)] = d/(du) [u^7] (du)/(dx)ddx[tan7(x2)]=ddu[u7]dudx

where

  • u = tan(x^2)u=tan(x2)

  • d/(du) [u^7] = 7u^6ddu[u7]=7u6:

= 7d/(dx)[tan(x^2)]tan^6(x^2)=7ddx[tan(x2)]tan6(x2)

Using the chain rule again:

d/(dx) [tan(x^2)] = d/(du) [tanu] (du)/(dx)ddx[tan(x2)]=ddu[tanu]dudx

where

  • u = x^2u=x2

  • d/(du) [tanu] = sec^2uddu[tanu]=sec2u:

= 7d/(dx)[x^2]sec^2(x^2)tan^6(x^2)=7ddx[x2]sec2(x2)tan6(x2)

Use the power rule on the x^2x2 term:

d/(dx) [x^n] = nx^(n-1)ddx[xn]=nxn1

where

  • n = 2n=2:

= 7(2x)sec^2(x^2)tan^6(x^2)=7(2x)sec2(x2)tan6(x2)

color(blue)(ulbar(|stackrel(" ")(" "= 14xsec^2(x^2)tan^6(x^2)" ")|)