What is the derivative of tan(xy)=y1+x2?

1 Answer
May 7, 2018

dydx=x4+2x2+y2+2xy+1x4+3x2+y2+2

Explanation:

Differentiate both sides of the equality with respect to x:

sec2(xy)(1dydx)=11+x2dydx2xy(1+x2)2

solve for dydx:

dydx(sec2(xy)+11+x2)=sec2(xy)+2xy(1+x2)2

dydx=sec2(xy)+2xy(1+x2)2sec2(xy)+11+x2

Note now that:

sec2(xy)=1+tan2(xy)=1+y2(1+x2)2

so:

dydx=1+y2(1+x2)2+2xy(1+x2)21+y2(1+x2)2+11+x2

and multiplying numerator and denominator by (1+x2)2:

dydx=(1+x2)2+y2+2xy(1+x2)2+y2+1+x2

dydx=x4+2x2+y2+2xy+1x4+3x2+y2+2