What is the derivative of (tan2x+sec2x)^2(tan2x+sec2x)2?

1 Answer
Oct 11, 2017

(dy)/(dx)=4sec2x(tan2x+sec2x)^2dydx=4sec2x(tan2x+sec2x)2

Explanation:

we will use teh chain rule

(dy)/(dx)=(dy)/(du)(du)/(dx)dydx=dydududx

y=(tan2x+sec2x)^2y=(tan2x+sec2x)2

u=tan2x+sec2x=>(du)/(dx)=2sec^2 2x+2sec2xtan2xu=tan2x+sec2xdudx=2sec22x+2sec2xtan2x

y=u^2=>(dy)/(du)=2uy=u2dydu=2u

:.(dy)/(dx)=2uxx(2sec^2 2x+2sec2xtan2x)

substitute back and tidy up

(dy)/(dx)=2(tan2x+sec2x)(2sec^2 2x+2sec2xtan2x)

(dy)/(dx)=4sec2x(tan2x+sec2x)(sec2x+tan2x)

(dy)/(dx)=4sec2x(tan2x+sec2x)^2