What is the derivative of #y=arcsin(2x+1)#?

2 Answers
Jun 7, 2017

The derivative is #=1/sqrt(-x(x+1))#

Explanation:

#y=arcsin(2x+1)#

So,

#siny=2x+1#

Differentiating wrt #x#

#cosy*dy/dx=2#

#dy/dx=2/cosy#

#sin^2y+cos^2y=1#

#cos^2y=1-sin^2y#

#=1-(2x+1)^2#

#=1-4x^2-4x-1#

#=-4(x^2+x)#

#cosy=sqrt(-4(x^2+x))#

Therefore,

#dy/dx=2/(2sqrt(-x(x+1)))#

#=1/sqrt(-x(x+1))#

Jun 7, 2017

#dy/dx=2/(sqrt(1-(2x+1)^2))#

Explanation:

#color(orange)"Reminder " d/dx(sin^-1x)=1/sqrt(1-x^2)#

#"differentiate using the "color(blue)"chain rule"#

#• d/dx(sin^-1(f(x)))=1/sqrt(1-(f(x))^2)xxf'(x)#

#y=sin^-1(2x+1)#

#rArrdy/dx=1/sqrt(1-(2x+1)^2)xxd/dx(2x+1)#

#color(white)(rArrdy/dx)=2/sqrt(1-(2x+1)^2)#