What is the derivative of y=arcsin(2x+1)?

2 Answers
Jun 7, 2017

The derivative is =1/sqrt(-x(x+1))

Explanation:

y=arcsin(2x+1)

So,

siny=2x+1

Differentiating wrt x

cosy*dy/dx=2

dy/dx=2/cosy

sin^2y+cos^2y=1

cos^2y=1-sin^2y

=1-(2x+1)^2

=1-4x^2-4x-1

=-4(x^2+x)

cosy=sqrt(-4(x^2+x))

Therefore,

dy/dx=2/(2sqrt(-x(x+1)))

=1/sqrt(-x(x+1))

Jun 7, 2017

dy/dx=2/(sqrt(1-(2x+1)^2))

Explanation:

color(orange)"Reminder " d/dx(sin^-1x)=1/sqrt(1-x^2)

"differentiate using the "color(blue)"chain rule"

• d/dx(sin^-1(f(x)))=1/sqrt(1-(f(x))^2)xxf'(x)

y=sin^-1(2x+1)

rArrdy/dx=1/sqrt(1-(2x+1)^2)xxd/dx(2x+1)

color(white)(rArrdy/dx)=2/sqrt(1-(2x+1)^2)