What is the derivative of y= Ln tan^-1 xy=lntan1x?

1 Answer
May 28, 2018

1/((tan^-1x)(x^2+1))1(tan1x)(x2+1)

Explanation:

Given: y=ln(tan^-1x)y=ln(tan1x).

Use the chain rule, which states that,

dy/dx=dy/(du)*(du)/dxdydx=dydududx

Let u=tan^-1x,:.(du)/dx=1/(x^2+1).

Then, y=lnu,:.dy/(du)=1/u.

Combining, we get:

dy/dx=1/u*1/(x^2+1)

=1/(u(x^2+1))

Replacing back u=tan^-1x, we get:

=1/((tan^-1x)(x^2+1))