What is the derivative of y=sin(1+tan(2x))y=sin(1+tan(2x))?

1 Answer
Aug 19, 2016

2sec^2(2x)*cos(1+tan2x)2sec2(2x)cos(1+tan2x)

Explanation:

Finding the derivative of this function by applying chain rule and using derivative of some trigonometric functions.

Let:
u(x)=1+tan(2x)u(x)=1+tan(2x)
f(x)=sinxf(x)=sinx

Then f(u(x))=sin(1+tan(2x))f(u(x))=sin(1+tan(2x))

f(u(x)))f(u(x))) is a composite function where its derivative can be found by applying chain rule that says:

color(blue)(f(u(x))'=u'(x)*f'(u(x))

Let's find u'(x) and f'(x)

u'(x)=(2x)'*tan'(2x)
color(blue)(u'(x)=2sec^2(2x))

color(blue)(f'(x)=cosx)

(f(u(x)))'=u'(x)*f'(u(x))

(f(u(x)))'=2sec^2(2x)*cos(u(x))

color(red)((sin(1+tan2x))'=2sec^2(2x)*cos(1+tan2x))