What is the derivative of y=sinx/(2+cosx)?

1 Answer
May 19, 2017

y' = frac(1 + 2 cos(x))((2 + cos(x))^(2))

Explanation:

We have: y = frac(sin(x))(2 + cos(x))

This function can be differentiated using the "quotient rule":

Rightarrow y' = frac((2 + cos(x)) cdot frac(d)(dx)(sin(x)) - (sin(x)) cdot frac(d)(dx)(2 + cos(x)))((2 + cos(x))^(2))

Rightarrow y' = frac((2 + cos(x)) cdot cos(x) - sin(x) cdot (- sin(x)))((2 + cos(x))^(2))

Rightarrow y' = frac(2 cos(x) + cos^(2)(x) + sin^(2)(x))((2 + cos(x))^(2))

One of the Pythagorean identities is cos^(2)(x) + sin^(2)(x) = 1.

We can rearrange it to get:

Rightarrow sin^(2)(x) = 1 - cos^(2)(x)

Let's apply this rearranged identity:

Rightarrow y' = frac(2 cos(x) + cos^(2)(x) + 1 - cos^(2)(x))((2 + cos(x))^(2))

Rightarrow y' = frac(1 + 2 cos(x))((2 + cos(x))^(2))