"distance between two point for the polar form is given as:"distance between two point for the polar form is given as:
s=sqrt(r_1^2+r_2^2-2*r_1*r_2*cos (theta_2-theta_1)s=√r21+r22−2⋅r1⋅r2⋅cos(θ2−θ1)
r_1=2r1=2
r_2=-2r2=−2
theta_1=(5pi)/4θ1=5π4
theta_2=(11pi)/12θ2=11π12
(theta_2-theta_1)=(11pi)/2-(5pi)/4=(22pi-5pi)/4=(17pi)/4(θ2−θ1)=11π2−5π4=22π−5π4=17π4
s=sqrt(2^2+(-2)^2-2*2*(-2)*cos ((17pi)/4)s=√22+(−2)2−2⋅2⋅(−2)⋅cos(17π4)
s=sqrt(4+4+8*cos((17pi)/4)s=√4+4+8⋅cos(17π4)
s=sqrt(8+8*0,707)s=√8+8⋅0,707
s=sqrt(8+5,656s=√8+5,656
s=sqrt(13,656)s=√13,656
s~=3,70" "unitss≅3,70 units