What is the distance between (3 , (3 pi)/4 ) and (9, pi )?

1 Answer
Mar 14, 2016

14.739

Explanation:

(r,theta) in polar coordinates is (rcostheta,rsintheta) in rectangular coordinates.

Hence (3,(3pi)/4) is (3cos((3pi)/4),3sin((3pi)/4)) or (3*(-1)/sqrt2,3*(-1)/sqrt2) or ((-3sqrt2)/2,-(3sqrt2)/2)

and 9.pi) is (9cospi,9sinpi) or (9xx1,9xx0) or (9,0)

The distance between (9,0) and ((-3sqrt2)/2,-(3sqrt2)/2) is

sqrt((9-((-3sqrt2)/2))^2+(0-((-3sqrt2)/2))^2) or

sqrt((9+(3sqrt2)/2)^2+((3sqrt2)/2)^2) or

sqrt(81+27sqrt2+9/2+9/2) or

sqrt(90+27sqrt2) or 3sqrt(10+3sqrt2) or

= 3sqrt(10+14.142)=3sqrt24.142=3xx4.913=14.739