What is the distance between #(3 ,( pi)/4 )# and #(-2 , ( pi )/2 )#?

1 Answer
Feb 5, 2017

#D=+-sqrt(13+6sqrt(2))# or #D~~+-4.64#

Explanation:

You are given two points in polar coordinates

  • #(3,pi"/"4)# where #r_1=3# and #theta_1=pi"/"4#
  • #(-2,pi"/"2)# where #r_2=-2# and #theta_2=pi"/"2#

The distance formula for polar coordinates is

#D^2=r_1^2+r_2^2-2*r_1*r_2*cos(theta_2-theta_1)#

Plug in the values above

#D^2=3^2+(-2)^2-2(3)(-2)cos(pi"/"2-pi"/"4)#
#D^2=9+4+12cos(pi"/"4)#
#D^2=13+12(sqrt(2)/2)#
#D^2=13+6sqrt(2)#

Now take the square root of both sides

#D=+-sqrt(13+6sqrt(2))#
#D~~+-4.64#