What is the distance between (4 ,( - 3pi)/8 ) and (-1 ,( 3 pi )/4 )?

1 Answer
Aug 2, 2018

D=sqrt(17-8cos(pi/8))

Explanation:

We know that ,

"Distance between Polar Co-ordinates:"A(r_1,theta_1)and B(r_2,theta_2) is

color(red)(D=sqrt(r_1^2+r_2^2-2r_1r_2cos(theta_1-theta_2))...to(I)

We have , P_1(4,(-3pi)/8) and P_2(-1,(3pi)/4).

So , r_1=4 , r_2=-1 , theta_1=(-3pi)/8 and theta_2=(3pi)/4

=>theta_1-theta_2=(-3pi)/8-(3pi)/4=(-3pi-6pi)/8=(-9pi)/8

=>cos(theta_1-theta_2)=cos((-9pi)/8)
=>cos(theta_1-theta_2)=cos((9pi)/8)to[becausecos(-theta)=costheta]
=>cos(theta_1-theta_2)=cos(pi+pi/8)=-cos(pi/8)

"Using : " color(red)((I) we get

D=sqrt(4^2+(-1)^2-2(4)(-1)(-cos(pi/8))

=>D=sqrt(16+1-8*cos(pi/8))

=>D=sqrt(17-8cos(pi/8))

=>D~~3