What is the distance between #(4 ,( 7 pi)/6 )# and #(3 , ( - pi )/2 )#?

2 Answers
Feb 27, 2016

#sqrt#13

Explanation:

(x, y) = (r cos #theta#, r sin #theta# ) are components of the position vector ( r, #theta# ).
The radial vectors are ( #-2# #sqrt#3, #-2# ) and ( 0, #-3# ). The vector between the given points is the difference (#-2# #sqrt#3, 1 ). .
The distance is the length of this vector = #sqrt#13.

Feb 27, 2016

#3.606#

Explanation:

Point #(4,(7pi)/6)# in Cartesian coordinates represents #(4cos(7pi)/6), 4sin(7pi)/6))#

i.e. #(4xx(-sqrt3/2), 4xx((-1)/2))# or #(-2sqrt3, -2)#

Point #(3,-(pi)/2)# in Cartesian coordinates represents #(3cos(-pi/2),3sin(-pi/2))#

i.e. #(3xx0, 3xx(-1))# or #(0, -3)#

Hence distance between #(-2sqrt3, -2)# and #(0,-3)#

is #sqrt((0-(-2sqrt3))^2+(-3-(-2))^2#

= #sqrt((2sqrt3)^2+(-1)^2#

= #sqrt(12+1)#

= #sqrt13# = #3.606#