What is the distance between #(4, pi/2 )# and #(5, pi/12 )#?

1 Answer
Apr 25, 2016

≈ 5.54

Explanation:

Using the Polar version of the #color(blue)" distance formula "#

#color(red)(|bar(ul(color(white)(a/a)color(black)( d^2 = r_1^2 + r_2 ^2 - (2r_1r_2 cos(theta_2 - theta_1)))color(white)(a/a)|)))#
where # (r_1,theta_1)" and " (r_2,theta_2)" are 2 polar points "#

let # (r_1,theta_1)=(5,pi/12)" and " (r_2,theta_2)=(4,pi/2)#

#d^2=5^2+4^2-(2xx5xx4xxcos(pi/2-pi/12)#

#=25+16-(40cos((5pi)/12)=41-(10.353)=30.647 #

now #d^2=30.647 rArr d=sqrt30.647 ≈ 5.54#