The distance formula for polar coordinates is
d=sqrt(r_1^2+r_2^2-2r_1r_2Cos(theta_1-theta_2)d=√r21+r22−2r1r2cos(θ1−θ2)
Where dd is the distance between the two points, r_1r1, and theta_1θ1 are the polar coordinates of one point and r_2r2 and theta_2θ2 are the polar coordinates of another point.
Let (r_1,theta_1)(r1,θ1) represent (5,(7pi)/4)(5,7π4) and (r_2,theta_2)(r2,θ2) represent (-4,pi)(−4,π).
implies d=sqrt(5^2+(-4)^2-2*5*(-4)Cos((7pi)/4-pi)⇒d=√52+(−4)2−2⋅5⋅(−4)cos(7π4−π)
implies d=sqrt(25+16+40Cos((3pi)/4)⇒d=√25+16+40cos(3π4)
implies d=sqrt(41+40*(-0.7071))=sqrt(41-28.284)=sqrt(12.716)=3.56595⇒d=√41+40⋅(−0.7071)=√41−28.284=√12.716=3.56595 units
implies d=3.56595⇒d=3.56595 units (approx)
Hence the distance between the given points is 3.565953.56595 units.