Each point on a polar plane is represented by the ordered pair (r,theta)(r,θ).
So lets call the coordinates of P_1P1 as (r_1,theta_1)(r1,θ1) and coordinates of P_2P2 as (r_2,theta_2)(r2,θ2) . To find the distance between two points on a polar plane use the formula d=sqrt((r_1) ^2+(r_2)^2-2r_1r_2cos(theta_2-theta_1))d=√(r1)2+(r2)2−2r1r2cos(θ2−θ1)
Thererfore using the points (-6,(pi)/3)(−6,π3) and (7,(pi)/4)(7,π4), and the formula
d=sqrt((r_1) ^2+(r_2)^2-2r_1r_2cos(theta_2-theta_1))d=√(r1)2+(r2)2−2r1r2cos(θ2−θ1)
we have
d=sqrt((-6)^2+(7)^2-2*-6*7cos((pi)/4-(pi)/3))d=√(−6)2+(7)2−2⋅−6⋅7cos(π4−π3)
:. d~~12.89