What is the distance the polar coordinates (-2 ,( -3 )/8 ) and (6 ,(-7 pi )/4 )?

1 Answer
Jan 10, 2017

=sqrt(40-24sqrt(((sqrt2-1)/(2sqrt2))))5.551, nearly.

Explanation:

After correcting the first angle as -3/8pi, the two points are

P(-2, -3/8pi) or, with positive r, P(2. -3/8pi-pi) =#

P(2, -11/8pi) and Q(6, -7/4pi)

Now, in the triangle POQ, where O is the pole r = 0,

OP = 2, OQ = 6 and angle POQ = (--7/4pi-(-11/8pi))=-3/8pi=-67.5^o.

Use PQ=sqrt(OP^2+OQ^2-2 OP OQ cos angle POQ

=sqrt(4+36-24cos(-67.5^o)

Here, cos(-67.5^0)=cos(67.5^o)

=sin (90-67.5)^o=sin 22.5^o

=sqrt((1-cos 45^0)/2)=sqrt(((sqrt2-1)/(2sqrt2)) . So,

PQ=sqrt(40-24sqrt(((sqrt2-1)/(2sqrt2))))=5.551, nearly -