What is the equation of the line normal to f(x)=9x^2 - 28x - 34 f(x)=9x228x34 at x=-1x=1?

1 Answer
Dec 29, 2016

46y-x-139=046yx139=0

Explanation:

let " "y=f(x) y=f(x)

1) find the gradient of the normal

This is done in two parts

(i) find gradient of tangent ((dy)/(dx))_(x=-1)(dydx)x=1

y=9x^2-28x-34=>(dy)/(dx)=18x-28y=9x228x34dydx=18x28

((dy)/(dx))_(x=-1)=18xx-1-28=-18-28=-46(dydx)x=1=18×128=1828=46

(ii) the normal is perpendicular to the tangent .

m_txxm_n=-1mt×mn=1

-46xxm_n=-1=>m_n=1/4646×mn=1mn=146

2) find the eqn. of normal

use " "y-y_1=m_n(x-x_1) yy1=mn(xx1)

need to find " " y_1" " y1 first

y(-1)=9xx(-1)^2-28xx(-1)-34y(1)=9×(1)228×(1)34

y(-1)=9+28-34=3y(1)=9+2834=3

(x_1,y_1)=(-1,3)(x1,y1)=(1,3)

:.y-3=1/46(x--1)

46y-138=x+1

46y-x-139=0