What is the equation of the line normal to f(x)=9x^2 +2x - 4 at x=-1?

1 Answer
Jun 30, 2016

y=+1/16x+49/16

Explanation:

Let the given point be P_1->(x_1,y_1)=(-1,y_1)

Differentiating each term of f(x)

9x^2->2xx9x^(2-1)=18x

2x->2

-4->0

So (dy)/(dx)->f^'(x) = 18x+2

=>f^'(-1) = 18(-1)+2 = -16
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Gradient of the line normal to f(x)" is "(-1)xx1/(-16) giving:

" "color(blue)(y=+1/16x+c) ................................Eqn(1)

This line passes through the point (x,y)->(-1,y_1)

Substitute x_1=-1 into f(x)->f(-1)" " ->" "y_1= 9(-1)^2+2(-1)-4

y_1=9-2-4=+3

Thus P_1->(x_1,y_1)=(-1,3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So Eqn(1) ->P_1->(x_1,y_1)->y_1=1/16x_1+c" " becomes

=>P_1->(x_1,y_1)->3=1/16(-1)+c

Thus c=+3 1/16 -> 49/16
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The equation of the line is:

y=+1/16x+49/16

Tony B