What is the equation of the line normal to f(x)=cos(5x+pi/4) at x=pi/3?

1 Answer

color(red)(y-((sqrt2+sqrt6))/4=-((sqrt2+sqrt6))/5*(x-pi/3)

Explanation:

Given f(x)=cos (5x+pi/4) at x_1=pi/3

Solve for the point (x_1, y_1)

f(pi/3)=cos((5*pi)/3+pi/4)=(sqrt2+sqrt6)/4

point (x_1, y_1)=(pi/3, (sqrt2+sqrt6)/4)

Solve for the slope m

f' (x)=-5*sin (5x+pi/4)

m=-5*sin ((5pi)/3+pi/4)

m=(-5(sqrt2-sqrt6))/4

for the normal line m_n

m_n=-1/m=-1/((-5(sqrt2-sqrt6))/4)=4/(5(sqrt2-sqrt6))
m_n=-(sqrt2+sqrt6)/5

Solve the normal line

y-y_1=m_n(x-x_1)

color(red)(y-((sqrt2+sqrt6))/4=-((sqrt2+sqrt6))/5*(x-pi/3)

Kindly see the graph of y=cos (5x+pi/4) and the normal line y-((sqrt2+sqrt6))/4=-((sqrt2+sqrt6))/5*(x-pi/3)

graph{(y-cos (5x+pi/4))(y-((sqrt2+sqrt6))/4+((sqrt2+sqrt6))/5*(x-pi/3))=0[-5,5,-2.5,2.5]}

God bless....I hope the explanation is useful.