What is the equation of the line normal to # f(x)=sec4x-cot2x# at # x=pi/3#?

1 Answer
Apr 11, 2018

#"Normal"=>y=-(3x)/(8-24sqrt3)+(152sqrt3-120+3pi)/(24-72sqrt2)=>y~~0.089x-1.52#

Explanation:

The normal is the perpendicular line to the tangent.

#f(x)=sec(4x)-cot(2x)#
#f'(x)=4sec(4x)tan(3x)+2csc^2(2x)#

#f'(pi/3)=4sec((4pi)/3)tan((4pi)/3)+2csc^2((2pi)/3)=(8-24sqrt3)/3#

For normal, #m=-1/(f'(pi/3))=-3/(8-24sqrt3)#

#f(pi/3)=sec((4pi)/3)-cot((2pi)/3)=(sqrt3-6)/3#

#(sqrt3-6)/3=-3/(8-24sqrt3)(pi/3)+c#

#c=(sqrt3-6)/3+pi/(8-24sqrt3)=(152sqrt3-120+3pi)/(24-72sqrt2)#

#"Normal":y=-(3x)/(8-24sqrt3)+(152sqrt3-120+3pi)/(24-72sqrt2);y=0.089x-1.52#