What is the equation of the line normal to f(x)= sqrt(2x^3-x) at x=1?

1 Answer
Feb 19, 2016

y=5/2x-5/2

Explanation:

Let y=sqrt(2x^3-x)

y=(2x^3-x)^(1/2)

Applying the chain rule rArr

y'=1/2(2x^3-x)^(-1/2)xx(6x^2-1)

y'=((6x^2-1))/(2sqrt(2x^3-x))

This equals the gradient m.

So when x=1rArr

m=((6-1))/(2sqrt(2-1))=5/2

The tangent line is of the form:

y=mx+c

At x=1,

y=sqrt(2-1)=1

:.1=5/2xx1 +c

:.c=-5/2

So the equation of the tangent is:

y=5/2x-5/2