color(blue)("determine the gradient of "f(x))determine the gradient of f(x)
Expanding the brackets
f(x)-=(x-1)(x^2+4x+4)f(x)≡(x−1)(x2+4x+4)
f(x)-=x^3+4x^2+4x" "-x^2-4x-4f(x)≡x3+4x2+4x −x2−4x−4
=x^3+3x^2-4=x3+3x2−4
f'=3x^2+6x
f'(1)=3(1)^2+6(1) = 9
"The above value of 9 is the gradient of " f(x)" at "x=1
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the equation of the straight line")
So the gradient of the straight line normal to this is -1/9 and it will pass through the point P_1->(x_1,y_1) where x_1=1 larr" given"
So at P_1
f(1)=y_1=(x_1)^3+3(x_1)^2-4
y_1=1+3-4=0
Giving y=mx+c" " ->" "y_1=-1/9x_1+c
c=0+1/9(1) = +1/9
color(blue)(y=1/9x+1/9)