What is the equation of the line normal to #f(x)= x^3e^x # at #x=2#?

1 Answer

#y=-x/(20*e^2)+1/(10*e^2)+8*e^2#

Explanation:

From the given equation #f(x)=x^3*e^x# at #x=2#

Let us solve for the point first. We should find #f(2)#

#f(2)=2^3*e^2=8*e^2#
We now have the point at #(2, 8e^2)#

Now, we need to compute the slope m and then obtain its negative reciprocal because, we are after the normal line.

First derivative of #f(x)# is #f' (x)#

#d/dxf(x)=f' (x)=d/dx(x^3*e^x)=e^x*d/dx(x^3)+x^3*d/dx(e^x)#

#f' (x)=3x^2*e^x+x^3*e^x#

for slope #m=f' (2)# use #x=2#

#f' (x)=3x^2*e^x+x^3*e^x#
#f' (2)=3(2)^2*e^2+(2)^3*e^2#
#f' (2)=12*e^2+8*e^2#
#f' (2)=20*e^2#
and #m=f' (2)=20*e^2#

For the normal line, we need #m'=-1/m#

#m'=-1/m=-1/(20*e^2)#

Let us write the Normal line equation using #m'=-1/(20*e^2)# and the point #(2, 8e^2)#

By Point-Slope form

#y-y_1=m' (x-x_1)#

#y-8e^2=-1/(20*e^2)(x-2)#

#y=-1/(20*e^2)(x-2)+8e^2#

#color(red)(y=-x/(20*e^2)+1/(10*e^2)+8*e^2" ")#the required Normal Line

God bless....I hope the explanation is useful.