What is the equation of the line that is normal to f(x)= (2-x)/sqrt( 2x+2) f(x)=2x2x+2 at x=2 x=2?

1 Answer

y=\sqrt6(x-2)y=6(x2)

Explanation:

The given function

f(x)=\frac{2-x}{\sqrt{2x+2}}f(x)=2x2x+2

setting x=2x=2 in the given function, we get yy-coordinate of point

y=f(2)y=f(2)

=\frac{2-2}{\sqrt{2\cdot 2+2}}=0=2222+2=0

Now, differentiating above equation w.r.t. xx we get slope dy/dxdydx of tangent as follows

dy/dx=d/dxf(x)dydx=ddxf(x)

=\frac{\sqrt{2x+2}(-1)-(2-x)\frac{1}{\sqrt{2x+2}}}{(\sqrt{2x+2})^2}=2x+2(1)(2x)12x+2(2x+2)2

=\frac{-(2x+2)-(2-x)}{(2x+2)^{3/2}}=(2x+2)(2x)(2x+2)32

=\frac{-x-4}{(2x+2)^{3/2}}=x4(2x+2)32

setting x=2x=2 in above equation, we get slope of tangent at (2, 0)(2,0)

=\frac{-2-4}{(2\cdot 2+2)^{3/2}}=24(22+2)32

=-1/\sqrt6=16

hence the slope mm of normal at the same point

=-1/(-1/\sqrt6)=\sqrt6=116=6

hence the equation of normal at (x_1, y_1)\equiv (2, 0) (x1,y1)(2,0) & having slope m=\sqrt6m=6 is given by following formula

y-y_1=m(x-x_1)yy1=m(xx1)

y-0=\sqrt6(x-2)y0=6(x2)

y=\sqrt6(x-2)y=6(x2)