What is the equation of the line that is normal to f(x)=-2x^2-2e^x at x=-2 ?

1 Answer
Mar 7, 2017

f(x)=-2x^2-2e^x

f'(x)=-4x-2e^x

f'(-2)=8-2/e^2 larr This is the gradient of the tangent.

"m"_"n"=-1/(m_tan)=-1/(8-2/e^2)=-(e^2)/(8e^2-2)

f(-2)=-8-2/e^2=-(8e^2-2)/e^2

y-y_1=m(x-x_1)

y+(8e^2-2)/e^2=-(e^2)/(8e^2-2)(x+2)

y+(8e^2-2)/e^2=-(xe^2)/(8e^2-2)-(2e^2)/(8e^2-2)

y=(xe^2)/(1-8e^2) -(33e^4 -16e^2+2)/(e^2(2e-1)(2e+1))