What is the equation of the line that is normal to f(x)=-3x^2sinx at x=pi/3?

1 Answer
Feb 18, 2018

(y-(pi)^2/6)/(x-pi/3)=(18sqrt3)/(pi(18+sqrt3)

Explanation:

"Let "y=-3x^2sinx

"Let"u=x^2, v=sinx

y=-uv

"Differentiating wrt x on both sides"

(dy)/dx=d/dx(y)=-d/dx(uv)

"By product rule", d/dx(uv)=u(dv)/dx+v(du)/dx

(du)/dx=2x, (dv)/dx=cosx

d/dx(uv)=x^2cosx+(sinx)(2x)

d/dx(uv)=x^2cosx+2xsinx

(dy)/dx=-(x^2cosx+2xsinx)

x=pi/3

y=-3x^2sinx=y=-3(pi/3)^2sin(pi/3)

y=-3(pi)^2/9xx1/2

y=-(pi)^2/6

P-=(x,y)=(pi/3,-(pi)^2/6)

dy/dx=-(x^2cosx+2xsinx)
=-((pi/3)^2cos(pi/3)+2(pi/3)sin(pi/3))

=-(pi^2/9xx1/2+(2pi)/3xxsqrt3/2)

dy/dx=-((pi)^2/18+pi/sqrt3)

"Slope of the tangent at "P-=(pi/3,-(pi)^2/6) "is"

m=dy/dx=-((pi)^2/18+pi/sqrt3)

"Slope of the normal m' is given by " m'=-1/m

m'=1/((pi)^2/18+pi/sqrt3)=1/((sqrt3(pi)^2+18pi)/(18sqrt3))

m'=(18sqrt3)/(sqrt3(pi)^2+18pi)=(18sqrt3)/(pi(sqrt3+18)

m'=(18sqrt3)/(pi(18+sqrt3)

"Equation of the normal passing through the point ", P-=(pi/3,-(pi)^2/6) "and having the slope ", m'=(18sqrt3)/(pi(18+sqrt3) "

"is given by"

(y-(pi)^2/6)/(x-pi/3)=(18sqrt3)/(pi(18+sqrt3)