What is the equation of the line that is normal to f(x)=cscx+tanx-cotx f(x)=cscx+tanxcotx at x=-pi/3x=π3?

1 Answer
Feb 23, 2018

y=-(3x)/14-2.53y=3x142.53

Explanation:

"Tangent":d/dx[f(x)]=f'(x)

"Normal":-1/(f'(x))=-1/(d/dx[cscx+tanx-cotx])=-1/(d/dx[cscx]+d/dx[tanx]-d/dx[cotx])=-1/(-cscxcotx+sec^2x+csc^2x)

-1/(f'(-pi/3))=-1/(-csc(-pi/3)cot(-pi/3)+sec^2(-pi/3)+csc^2(-pi/3))=-1/(14/3)=-3/14

y=mx+c

f(a)=ma+c

csc(-pi/3)+tan(-pi/3)-cot(-pi/3)=-pi/3(-3/14)+c

c=csc(-pi/3)+tan(-pi/3)-cot(-pi/3)+pi/3(-3/14)

c=-2.53

y=-(3x)/14-2.53