What is the equation of the line that is normal to f(x)= tanx-sin2xf(x)=tanxsin2x at x=(4pi)/3 x=4π3?

1 Answer

color(blue)(y=-1/5x+(4pi)/15+sqrt3/2)y=15x+4π15+32

Explanation:

Given

f(x)=tan x-sin 2xf(x)=tanxsin2x at x_1=(4pi)/3x1=4π3

Solve for the point (x_1, y_1)(x1,y1) first

y_1=tan x_1-sin 2*x_1y1=tanx1sin2x1

y_1=tan ((4pi)/3)-sin (2*(4pi)/3)y1=tan(4π3)sin(24π3)

y_1=sqrt3-sqrt3/2y1=332

y_1=sqrt3/2y1=32

Our point (x_1, y_1)=((4pi)/3, sqrt3/2)(x1,y1)=(4π3,32)

Solve for the slope mm

f(x)=tan x-sin 2xf(x)=tanxsin2x

find the first derivative f' (x)=m

f' (x)=sec^2 x- 2*cos 2x

m=f' ((4pi)/3)=sec^2 ((4pi)/3)- 2*cos (2((4pi)/3))
m=(-2)^2-2(-1/2)
m=4+1=5

For the normal line

m_n=-1/m

m_n=-1/5

Solve for the normal line:

y-y_1=m_n(x-x_1)

y-sqrt3/2=-1/5(x-(4pi)/3)

y-sqrt3/2=-1/5x+(4pi)/15

color(blue)(y=-1/5x+(4pi)/15+sqrt3/2)

Kindly see the graph of f(x)=tan x-sin 2x and the normal line y=-1/5x+(4pi)/15+sqrt3/2 at the point ((4pi)/3, sqrt3/2)

Desmos

God bless....I hope the explanation is useful.