Given: f(x) = (x + 4)^2 - e^x " at "x = -3f(x)=(x+4)2−ex at x=−3
First find the slope of the curve at x = -3x=−3.
The first derivative is called the slope function. We need to find the first derivative:
f'(x) = 2(x+4)^1 (1) - e^x
f'(x) = 2x + 8 - e^x
slope = m = f'(-3) = 2(-3) + 8 - e^-3 = 2 - 1/e^3 = (2e^3 - 1)/e^3
A line that is normal is a perpendicular line. m_("perpendicular") = -1/m: " "-e^3/(2e^3 - 1)
f(-3) = (-3 + 4)^2 - e^-3 = 1 - 1/e^3 = (e^3 - 1)/e^3
To find the Normal line, use the point (-3, (e^3 - 1)/e^3):
y - y_1 = m (x - x_1)
y - (e^3 - 1)/e^3 = -e^3/(2e^3 - 1)(x +3)
y - (e^3 - 1)/e^3 = -e^3/(2e^3 - 1) x -(3e^3)/(2e^3 - 1)
y = -e^3/(2e^3 - 1) x -(3e^3)/(2e^3 - 1) +(e^3 - 1)/e^3
y = (e^3x)/(1-2e^3) +(3e^3)/(1-2e^3) +(e^3 - 1)/e^3
Find a common denominator for the last two terms:
y = (e^3x)/(1-2e^3) + (e^6 + 3e^3 - 1)/(e^3(1-2e^3)