What is the equation of the line that is normal to f(x)= x/sqrt( 2x+2) at x=2 ?

1 Answer
Nov 15, 2017

y=-(3sqrt(6))/2x+(10sqrt(6))/3

Explanation:

First we need to differentiate the function in order to find the gradient at x=2.

If we rewrite x/(sqrt(2x+2)) as x*(2x+2)^(-1/2) we can use the product rule and the chain rule.

The product rule:

dy/dx (a*b)= b*(da)/dx + a*(db)/dx

d/dx(x)=1

d/dx(2x+2)^(-1/2)=-1/2(2x+2)^(-3/2)*(2)=-(2x+2)^(-3/2)

dy/dxx*(2x+2)^(-1/2)=(2x+2)^(-1/2) +x * (-(2x+2)^(-3/2))

->(1)/((2x+2)^(1/2))-(x)/(2x+2)^(3/2)=((2x+2)-x)/((2x+2)^(3/2))=(x+2)/((2x+2)^(3/2))=(x+2)/((2x+2)(2x+2)^(1/2))=1/2(x+2)/((x+1)sqrt(2x+2)

f^'(x)=1/2(x+2)/((x+1)sqrt(2x+2)

Gradient at x=2

1/2(2+2)/((2+1)sqrt(2(2)+2))=4/(6sqrt(6))=sqrt(6)/9

For the normal line:

sqrt(6)/9=-(3sqrt(6))/2

Point on the line:

Plugging 2 into original function:

2/(sqrt(2(2)+2))=2/(sqrt(6))=(sqrt(6))/3

(2color(white)(8) , (sqrt(6))/3)

y-(sqrt(6))/3=-(3sqrt(6))/2(x-2)

->y=-(3sqrt(6))/2x+(6sqrt(6))/2+(sqrt(6))/3=-(3sqrt(6))/2x+(10sqrt(6))/3

Normal line:

y==-(3sqrt(6))/2x+(10sqrt(6))/3

Or:

6y=-9sqrt(6)*x+20sqrt(6)

Plot:

enter image source here