f(4) = 1/16 - 4 Rightarrow P = (4, -63/16)f(4)=116−4⇒P=(4,−6316)
(d)/(dx)f(x) = -2x^-3 - 1ddxf(x)=−2x−3−1
(d)/(dx)f(4) = -2/4^3 - 1 = (-1-32)/32 = mddxf(4)=−243−1=−1−3232=m // inclination of the tangent line
a = -1/m = 32/33a=−1m=3233 // inclination of the normal line nn
P in n: y = ax + bP∈n:y=ax+b // let's determine b
-63/16 = 32/33 cdot 4 + b−6316=3233⋅4+b
b = -63/16 - 128/33 = frac{-63*33 - 128*16}{16*33} = -4127/528b=−6316−12833=−63⋅33−128⋅1616⋅33=−4127528