#f(x)=g(x)h(x)=>f'(x)=g(x)h'(x)+g'(x)h(x)#
Here, #g(x)=3x#
#g'(x)=3#
#h(x)=ln(sin(2/x))#
If #h(x)=ln(j(x))=>h'(x)=(j'(x))/(j(x))#
#j(x)=sin(2/x)=sin(2x^(-1))#
If #j(x)=sin(l(x))=>j'(x)=l'(x)cos(l(x))#
#l(x)=2x^(-1)#
#l(x)=a(m(x))^n=>l'(x)=an(m(x))^(n-1)*m'(x)=-1*2*1*x^(-2)=-2x^(-2)#
#j'(x)=(-2x^(-2)cos(2x^(-1))#
#h'(x)=(-2x^(-2)cos(2x^(-1)))/(sin(2x^(-1))#
#f'(x)=3x((-2x^(-2)cos(2(x^(-1))))/(sin(2(x^(-1)))))+3ln(sin(2x^(-1))#
#=3x(-2x^(-2)cot(2x^(-1)))+3ln(sin(2x^(-1))#
#=3(x(-2x^(-2)cot(2x^(-1)))+ln(sin(2x^(-1)))#
#=3(-2x^(-1)cot(2x^(-1))+ln(sin(2x^(-1)))#
#=3((-2cot(2x^(-1)))/x+ln(sin(2x^(-1)))#
#=3(ln(sin(2x^(-1)))-(2cot(2x^(-1)))/x)#
#=3ln(sin(2x^(-1)))-(6cot(2x^(-1)))/x#
#3ln(sin(2(\pi/8)^(-1)))-(6cot(2(\pi/8)^(-1)))/((\pi/8))="undefined"#
When x is in radians then #f(\pi/8)="undefined"#
When x is in degrees then #f(\pi/8)=-178.6994485#