What is the equation of the normal line of f(x)= tan(2x)/cotxf(x)=tan(2x)cotx at x = pi/8x=π8?

1 Answer
Sep 23, 2016

-2(sqrt2+1)(2-sqrt2)(y-(2-sqrt2)/2)=x-pi/82(2+1)(22)(y222)=xπ8

Explanation:

equation of the normal: -y'_0(y-y_0)=x-x_0

y'=((2/cos^2(2x))*cotx+(tan2x)/sin^2x)/cot^2x

y'_0=((2/cos^2(pi/4))*cot(pi/8)+(tan(pi/4))/sin^2(pi/8))/cot^2(pi/8)=

=(4cos(pi/8)sin(pi/8)+1)/cos^2(pi/8)=

=(2sin(pi/4)+1)/((cos(pi/4)+1)/2)=

=4*(sqrt2+1)/(sqrt2+2)

y_0=tan(pi/8)=1-sqrt2/2

-2(sqrt2+1)(2-sqrt2)(y-(2-sqrt2)/2)=x-pi/8