What is the equation of the normal line of f(x)=(x-2)^(3/2)-x^3f(x)=(x2)32x3 at x=2x=2?

1 Answer

The Normal Line is

y=x/12-49/6y=x12496 or x-12y=98x12y=98

Explanation:

the given: f(x) =(x-2)^(3/2)-x^3f(x)=(x2)32x3 and x=2x=2

f(2) =(2-2)^(3/2)-(2)^3f(2)=(22)32(2)3

f(2)= -8f(2)=8

the point on the curve : (2, -8)(2,8)

compute slope mm then use -1/m1m for the normal line

f' (x) = (3/2)(x-2)^(1/2)-3x^2

f' (2) = (3/2)(2-2)^(1/2)-3(2)^2

f' (2) = -12

The slope to be used to find the normal line is -1/m

-1/m=-1/-12=1/12

Determine now the Normal Line using

y-y_1=(1/12)(x-x_1)

y-(-8)=(1/12)(x-2)

after simplification the final answer:

x-12y=98 or y=x/12-49/6