What is the equation of the normal line of f(x)=x^3-4x^2+7x at x=-2?

1 Answer

y=-1/35x-1332/35

Explanation:

From the given equation
f(x)=x^3-4x^2+7x at the given abscissa x=-2

We need the negative reciprocal of slope m and the point

Solve for the slope m
m=f' (-2)

f' (x)=d/dx(x^3-4x^2+7x)

f' (x)=3x^2-8x+7

m=f' (-2)=3(-2)^2-8(-2)+7

m=f' (-2)=3(4)+16+7#

m=f' (-2)=35

Solve for f(-2)

f(x)=x^3-4x^2+7x
f(-2)=(-2)^3-4(-2)^2+7(-2)

f(-2)=-8-16-14
f(-2)=-38

Our needed point (x_1, y_1)=(-2, -38)

Let us now solve for the normal line

y-y_1=-1/m(x-x_1)

y--38=-1/35(x--2)

y+38=-1/35(x+2)

#y=-1/35(x+2)-38

y=-1/35x-2/35-38

y=-1/35x-1332/35

Kindly see the graph of f(x)=x^3-4x^2+7x and the normal line
y=-1/35x-1332/35
graph{(y+1/35x+1332/35)(y-x^3+4x^2-7x)=0[-90,90,-45,45]}

God bless....I hope the explanation is useful.