What is the equation of the normal line of f(x)=x^3+6x^2-3x at x=-1?

1 Answer
Mar 29, 2018

12y-x+14=0

Explanation:

f(x)=x^3+6x^2-3x

to find the normal at x=-1

so the y value

y=f(-1)=(-1)^3+6(-1)^2-3(-1)

y=-1+6-3=2

:. (x_1,y_1)=(-1,2)---(1)

we need the gradient at x=-1

the tangent gradient is

f'(-1)

and the normal gradient will be calculated from

m_tm_n=-1

f(x)=x^3+6x^2-3x

f'(x)=3x^2+12x-3

m_t=f'(-1)=3(-1)^2+12(-1)-3

m_t=3-12-3=-12

=>m_n= -1/m_t=1/12 " from "(1)

eqn of normal

(y-y_1)=m(x-x_1)

(y- -1)=1/12(x-2)

12(y+1)=x-2

=>12y-x+14=0