What is the equation of the normal line of f(x)=(x4)ex2 at x=0?

1 Answer
Sep 22, 2017

y=2.463x+0.5413

Explanation:

Equation of the line will equal
yy1=m2(xx1)

Differentiate to find the gradient function using the product rule
dydx=udvdx+vdudx

u=x4
dudx=1

v=ex2
dvdx=ex2

dydx=(x4)ex2+ex2
dydx=(x4)ex2+ex2
dydx=xex23ex2

At x=0
dydx=3e2=m1

The normal (m2) is perpendicular to the tangent (m1) so:
m2=1m1

m2=13e2
m2=13e2
m2=2.463

At x=0,
y=(04)e02
y=(4)e2
y=0.5413

So the equation of the normal to the curve at x=0 is,
yy1=m2(xx1)
y0.5413=2.463(x0)
y=2.463x+0.5413