What is the limit as x approaches infinity of e^(2x)cosxe2xcosx?

1 Answer
Jun 14, 2018

The limit does not exist.

Explanation:

Consider in fact the two sequences:

a_n = 2npian=2nπ

b_n = (2n+1)pibn=(2n+1)π

In both cases:

lim_(n->oo) a_n = lim_(n->oo) b_n = +oo

If the limit:

lim_(x->oo) e^(2x)cosx

existed then it would coincide with lim_(n->oo) e^(2a_n)cos(a_n) and lim_(n->oo) e^(2b_n)cos(b_n).

But:

lim_(n->oo) e^(2a_n)cos(a_n) = lim_(n->oo) e^(4pin)cos(2pin) = lim_(n->oo) e^(4pin) = +oo

while:

lim_(n->oo) e^(2b_n)cos(b_n) = lim_(n->oo) e^(4pin+2pi)cos((2n+1)pi) = -e^(2pi)lim_(n->oo) e^(4pin) = -oo