What is the slope of the line normal to the tangent line of f(x) = 2x^2-xsqrt(x^2-x) f(x)=2x2xx2x at x= 2 x=2?

1 Answer
Feb 9, 2017

"The Reqd. Slope="(16+5sqrt2)/103The Reqd. Slope=16+52103.

Explanation:

Recall that, f'(2) gives the slope of the Tangent Line to the

Curve C : y=f(x)=2x^2-xsqrt(x^2-x)

at the pt. P(2,f(2))=P(2,8-2sqrt2).

As Normal at pt. P is bot to the tgt., its slope is given by,

1/(f'(2)), if f'(2)!=0.

Now, f(x)=2x^2-xsqrt(x^2-x) = 2x^2-sqrt(x^4-x^3).

:. f'(x)=2(2x)-1/(2sqrt(x^4-x^3))*(x^4-x^3)'

=4x-1/(2sqrt(x^4-x^3))*(4x^3-3x^2)

=4x-(x^2(4x-3))/(2xsqrt(x^2-x))

:. f'(x)=4x-(x(4x-3))/(2sqrt(x^2-x))

rArr f'(2)=8-(2(8-3))/(2sqrt(4-2))=8-5/sqrt2=(8sqrt2-5)/sqrt2 !=0.

Hence, the Reqd. Slope =sqrt2/(8sqrt2-5)=(sqrt2(8sqrt2+5))/{(8sqrt2)^2-5^2}

=(16+5sqrt2)/103.