What is the slope of the line normal to the tangent line of f(x) = cosx+sin(2x-pi/12) at x= pi/3 ?

1 Answer
Aug 20, 2016

The Reqd. Slope=2/(sqrt6+sqrt3-sqrt2).

Explanation:

Slope of tgt. to the curve C : f(x)=cosx+sin(2x-pi/12) at x=pi/3 is f'(pi/3).

Hence, the slope of the normal at that pt. is -1/(f'(pi/3)).

Now, f(x)=cosx+sin(2x-pi/12)

rArr f'(x)=-sinx+cos(2x-pi/12)*d/dx(2x-pi/12)

=-sinx+2cos(2x-pi/12)

rArr f'(pi/3)=-sin(pi/3)+2cos{2(pi/3)-pi/12}

=-sqrt3/2+2cos(7pi/12)

Here, 2cos(7pi/12)=2cos(pi/3+pi/4)

=2{cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4)}

=2{1/2*1/sqrt2-sqrt3/2*1/sqrt2}=2{(1-sqrt3)/(2sqrt2)}=(1-sqrt3)/sqrt2

Hence, f'(pi/3)=-sqrt3/2+(1-sqrt3)/sqrt2=-sqrt3/2+(sqrt2-sqrt6)/2,

=(sqrt2-sqrt3-sqrt6)/2

Therefore, the Reqd. Slope=2/(sqrt6+sqrt3-sqrt2).