What is the slope of the line normal to the tangent line of f(x) = cosx+sin(2x-pi/12) at x= (5pi)/8 ?

1 Answer

Slope m_p=((sqrt(2+sqrt2)-2sqrt3)(sqrt2+10))/(-49)

Slope m_p=0.37651589912173

Explanation:

f(x)=cos x+sin(2x-pi/12)" "at x=(5pi)/8

f'(x)=-sin x+ 2*cos(2x-pi/12)

f'((5pi)/8)=-sin((5pi)/8)+2*cos(2*((5pi)/8)-pi/12)

f'((5pi)/8)=-cos (pi/8)+2*cos((7pi)/6)

f'((5pi)/8)=-1/2sqrt(2+sqrt2)+2((-sqrt3)/2)

f'((5pi)/8)=(-sqrt(2+sqrt2)-2sqrt3)/2

For the slope of the normal line

m_p=-1/m=-1/(f'((5pi)/8))=2/(sqrt(2+sqrt2)+2sqrt3)

m_p=(2(sqrt(2+sqrt2)-2sqrt3))/(sqrt2-10)

m_p=(2(sqrt(2+sqrt2)-2sqrt3)(sqrt2+10))/(-98)

m_p=((sqrt(2+sqrt2)-2sqrt3)(sqrt2+10))/(-49)

God bless....I hope the explanation is useful.