What is the slope of the line normal to the tangent line of f(x) = cosx*sin(2x-pi/6) f(x)=cosxsin(2xπ6) at x= pi/3 x=π3?

1 Answer
Jul 25, 2017

m=2/sqrt3=2/3sqrt3m=23=233

Explanation:

Let's first find the derivative of the function using the product rule :

f'(x)=-sinxsin(2x-pi/6)+2cosxcos(2x-pi/6)

The slope of the tangent line is f'(pi/3)

f'(pi/3)=-sin(pi/3)sin((2pi)/3-pi/6)+2cos(pi/3)cos((2pi)/3-pi/6)=

-sqrt3/2sin(pi/2)+2*1/2cos(pi/2)=-sqrt3/2

So now the slope of the normal line to the tangent is :

m=-1/(f'(pi/3))=2/sqrt3=2/3sqrt3