What is the slope of the line normal to the tangent line of f(x) = cscx-sec^2x +1 f(x)=cscxsec2x+1 at x= (17pi)/12 x=17π12?

1 Answer
Jun 2, 2018

y=-1(6*sqrt(6))*x+1/432*(432+864*sqrt(2)+17*sqrt(6)*pi)y=1(66)x+1432(432+8642+176π)

Explanation:

We get
f'(x)=-cot(x)*csc(x)-sec(x)*tan(x)
so
f'(17*pi/12)=6*sqrt(6)
and the slope of the normal line is given by
m_N=-1/(6*sqrt(6))
and
f(17/12*pi)=1+2sqrt(2)
From the equation

1+2sqrt(2)=-1/(6*sqrt(6))*17/12*pi+n
we get
n=1/432*(432+864*sqrt(2)+17*sqrt(6)*pi)