What is the slope of the line normal to the tangent line of f(x) = cscx-secx at x= (17pi)/12 ?
1 Answer
First off, you may want to refer to this answer as additional practice.
Furthermore, we will be using a similar method to the one in the answer linked above, and we'll also reference information that we've already figured out in that answer.
I got the line normal to the tangent line as:
f_N((17pi)/12) = -[1/(2(2 - sqrt3)^"3/2" + 2(2 + sqrt3)^"3/2")]x + 1/6 [12sqrt(2 + sqrt3) - 12sqrt(2 - sqrt3) - 17(2 - sqrt3)^"3/2"pi - 17(2 + sqrt3)^"3/2"pi]
The slope of this normal line is therefore
Or the approximate decimal normal line is:
f_N((17pi)/12) ~~ -0.0680x - 62.5816
You can see the tangent line itself here:
graph{(cscx - secx - y)(14.6969x - 62.5816 - y) = 0 [2.392, 6.833, -0.24, 5.306]}
Linearization Equation
bb(f_T(a) = f(a) + f"'"(a)(x - a)) where
a = (17pi)/12 .
Since this isn't half of a convenient angle, we'll end up using the addition formulas later for
For now:
f'(x) = -(cscxcotx + secxtanx)
f(x) = cscx - secx
so that
f'((17pi)/12) = -[csc((17pi)/12)cot((17pi)/12) + sec((17pi)/12)tan((17pi)/12)]
f((17pi)/12) = csc((17pi)/12) - sec((17pi)/12)
Since
Now, recall from here that:
sin(pi/12) = sqrt((1 - cos(pi"/"6))/2) = [...] = sqrt(2 - sqrt3)/2
cos(pi/12) = sqrt((1 + cos(pi"/"6))/2) = [...] = sqrt(2 + sqrt3)/2
Also, recall the addition formulas:
sin(u pm v) = sinucosv pm cosusinv
cos(u pm v) = cosucosv ∓ sinusinv
Thus:
color(green)(sin((17pi)/12)) = sin((3pi)/2 - pi/12)
= sin((3pi)/2)cos(pi/12) - cancel(cos((3pi)/2)sin(pi/12))^(0)
= color(green)(-sqrt(2 + sqrt3)/2)
color(green)(cos((17pi)/12)) = cos((3pi)/2 - pi/12)
= cancel(cos((3pi)/2)cos(pi/12))^(0) + sin((3pi)/2)sin(pi/12)
= color(green)(-sqrt(2 - sqrt3)/2)
This allows us to evaluate the following functions:
csc((17pi)/12) = 1/sin((17pi)/12) = -2/sqrt(2 + sqrt3) cot((17pi)/12) = cos((17pi)/12)/sin((17pi)/12) = sqrt(2 - sqrt3)/sqrt(2 + sqrt3) sec((17pi)/12) = 1/cos((17pi)/12) = -2/sqrt(2 - sqrt3) tan((17pi)/12) = 1/cot((17pi)/12) = sqrt(2 + sqrt3)/sqrt(2 - sqrt3)
Plugging all of these in to
color(green)(f'((17pi)/12)) = -[-2/sqrt(2 + sqrt3)sqrt(2 - sqrt3)/sqrt(2 + sqrt3) - 2/sqrt(2 - sqrt3)sqrt(2 + sqrt3)/sqrt(2 - sqrt3)]
= -[-(2sqrt(2 - sqrt3))/(2 + sqrt3) - (2sqrt(2 + sqrt3))/(2 - sqrt3)]
= (2(2 - sqrt3)^"3/2")/cancel((2 + sqrt3)(2 - sqrt3))^(1) + (2(2 + sqrt3)^"3/2")/cancel((2 - sqrt3)(2 + sqrt3))^(1)
= color(green)(2(2 - sqrt3)^"3/2" + 2(2 + sqrt3)^"3/2")
color(green)(f((17pi)/12)) = -2/sqrt(2 + sqrt3) + 2/sqrt(2 - sqrt3)
= -(2sqrt(2 - sqrt3))/cancel(sqrt(2 + sqrt3)sqrt(2 - sqrt3))^(1) + (2sqrt(2 + sqrt3))/cancel(sqrt(2 - sqrt3)sqrt(2 + sqrt3))^(1)
= color(green)(2sqrt(2 + sqrt3) - 2sqrt(2 - sqrt3))
Plugging these results into the linearization equation, we can obtain the tangent line equation to simplify.
f_T((17pi)/12) = stackrel(f(a))overbrace(2sqrt(2 + sqrt3) - 2sqrt(2 - sqrt3)) + stackrel(f'(a))overbrace([2(2 - sqrt3)^"3/2" + 2(2 + sqrt3)^"3/2"])(x - (17pi)/12)
Multiply through:
= 2sqrt(2 + sqrt3) - 2sqrt(2 - sqrt3) + 2(2 - sqrt3)^"3/2"x + 2(2 + sqrt3)^"3/2"x - 2(2 - sqrt3)^"3/2"(17pi)/12 - 2(2 + sqrt3)^"3/2"(17pi)/12
Get common denominators going on:
= [2(2 - sqrt3)^"3/2" + 2(2 + sqrt3)^"3/2"]x + (12sqrt(2 + sqrt3))/6 - (12sqrt(2 - sqrt3))/6 - (17pi)/6 (2 - sqrt3)^"3/2" - (17pi)/6 (2 + sqrt3)^"3/2"
Combine fractions with common denominators:
= [2(2 - sqrt3)^"3/2" + 2(2 + sqrt3)^"3/2"]x + (12sqrt(2 + sqrt3) - 12sqrt(2 - sqrt3))/6 - [(17pi)/6 (2 - sqrt3)^"3/2" + (17pi)/6 (2 + sqrt3)^"3/2"]
=> color(green)(f_T((17pi)/12) = [2(2 - sqrt3)^"3/2" + 2(2 + sqrt3)^"3/2"]x + 1/6 [12sqrt(2 + sqrt3) - 12sqrt(2 - sqrt3) - 17(2 - sqrt3)^"3/2"pi - 17(2 + sqrt3)^"3/2"pi])
So, the line normal to the tangent line will have the negative reciprocal slope:
color(blue)(f_N((17pi)/12) = -[1/(2(2 - sqrt3)^"3/2" + 2(2 + sqrt3)^"3/2")]x + 1/6 [12sqrt(2 + sqrt3) - 12sqrt(2 - sqrt3) - 17(2 - sqrt3)^"3/2"pi - 17(2 + sqrt3)^"3/2"pi])
Or the approximate decimal answer is:
color(blue)(f_N((17pi)/12) ~~ -0.0680x - 62.5816)