What is the slope of the line normal to the tangent line of f(x) = cscx-sin2x at x= (pi)/12 ?

1 Answer
Dec 19, 2016

After a long derivation, I got:

f_N(pi/12) = [(2 - sqrt3)/(sqrt3(2 - sqrt3) + 2sqrt(2+sqrt3))]x + (12sqrt(2 - sqrt3) - 3(2 - sqrt3) + pisqrt(2+sqrt3))/(6(2 - sqrt3)) + (sqrt3pi)/12

So the slope is (2 - sqrt3)/(sqrt3(2 - sqrt3) + 2sqrt(2+sqrt3)), or about 0.0619.

The tangent line shows as:

graph{(cscx - sin(2x) - y)(7.59218 - 16.1516x - y) = 0 [-6.2, 7.844, -2.215, 4.81]}

and you can verify that the slope is indeed the negative reciprocal of -(sqrt3(2 - sqrt3) + 2sqrt(2+sqrt3))/(2 - sqrt3).


From the following linearization formula:

bb(f_T(a) = f(a) + f"'"(a)(x - a))

we can get the equation of the tangent line. From that, the line normal to it is simply the one with the negative reciprocal slope, making it perpendicular, i.e. normal.

The derivative, f'(x), is:

f'(x) = -cscxcotx - 2cos2x

So, at x = pi/12:

f'(pi/12) = -[csc(pi/12)cot(pi/12) + 2cos(pi/6)]

and

f(pi/12) = csc(pi/12) - sin(pi/6)

so that

f_T(pi/12) = f(pi/12) + f'(pi/12)(x - pi/12)

#= csc(pi/12) - sin(pi/6) - csc(pi/12)cot(pi/12) + 2cos(pi/6)#

Note that pi/12 = 1/2 (pi/6). Let us use a half-angle formula to obtain this from a known trig value. Recall that:

sin^2(x) = (1 - cos2x)/2 => sin^2(x/2) = (1 - cosx)/2

=> sin(x/2) = pmsqrt((1-cosx)/2)

Similarly,

=> cos(x/2) = pmsqrt((1+cosx)/2).

Since sin is positive for the first two quadrants, and cosx is positive for the first quadrant, and pi/12 is in the first quadrant, we take the positive solutions.

This allows us to evaluate csc(pi/12) and cot(pi/12) directly. You should get:

csc(pi/12) = 1/(sin(pi/12)) = 1/(sin(1/2*pi/6))

= 1/(sqrt((1 - cos(pi"/"6))/2)) = [...] = 2/sqrt(2 - sqrt3)

Similarly,

cot(pi/12) = cos(pi/12)/sin(pi/12) = [...] = sqrt(2+sqrt3)/sqrt(2 - sqrt3)

So, we would then get the following tangent line:

f_T(pi/12) = csc(pi/12) - sin(pi/6) - [csc(pi/12)cot(pi/12)(x - pi/12) + 2cos(pi/6)(x - pi/12)]

Plug in our previous evaluations to get:

= 2/sqrt(2 - sqrt3) - 1/2 - 2/sqrt(2 - sqrt3)sqrt(2+sqrt3)/sqrt(2 - sqrt3)(x - pi/12) - sqrt3(x - pi/12)

= (4 - sqrt(2 - sqrt3))/(2sqrt(2 - sqrt3)) - (2sqrt(2+sqrt3))/(2 - sqrt3)(x - pi/12) - sqrt3(x - pi/12)

= (4 - sqrt(2 - sqrt3))/(2sqrt(2 - sqrt3)) - (2sqrt(2+sqrt3))/(2 - sqrt3)x + (2sqrt(2+sqrt3))/(2 - sqrt3) pi/12 - sqrt3x + (sqrt3pi)/12

= (12 - 3sqrt(2 - sqrt3))/(6sqrt(2 - sqrt3)) + [-sqrt3 - (2sqrt(2+sqrt3))/(2 - sqrt3)]x + (pisqrt(2+sqrt3))/(6(2 - sqrt3)) + (sqrt3pi)/12

= [-sqrt3 - (2sqrt(2+sqrt3))/(2 - sqrt3)]x + (12sqrt(2 - sqrt3) - 3(2 - sqrt3) + pisqrt(2+sqrt3))/(6(2 - sqrt3)) + (sqrt3pi)/12

=> color(green)(f_T(pi/12) = stackrel("Slope")overbrace(-[(sqrt3(2 - sqrt3) + 2sqrt(2+sqrt3))/(2 - sqrt3)])x + stackrel("y-intercept")overbrace((12sqrt(2 - sqrt3) - 3(2 - sqrt3) + pisqrt(2+sqrt3))/(6(2 - sqrt3)) + (sqrt3pi)/12))

Finally, when we take the negative reciprocal of the slope, we get the line normal to the tangent line:

color(blue)(f_N(pi/12) = [(2 - sqrt3)/(sqrt3(2 - sqrt3) + 2sqrt(2+sqrt3))]x + (12sqrt(2 - sqrt3) - 3(2 - sqrt3) + pisqrt(2+sqrt3))/(6(2 - sqrt3)) + (sqrt3pi)/12)

Or, the approximate decimal formula is:

color(blue)(f_N(pi/12) ~~ 0.0619x + 7.59218)