What is the slope of the line normal to the tangent line of f(x) = e^(x^2-1)+2x-2 f(x)=ex2−1+2x−2 at x= 1 x=1?
1 Answer
y=-1/82.34x+22.09y=−182.34x+22.09
Explanation:
Given
y=e^(x^2-1)+2x-2y=ex2−1+2x−2
At
y=2.71828^(2^2-1)+2(2)-2y=2.7182822−1+2(2)−2
y=2.71828^3+4-2y=2.718283+4−2
y=20.085+2=22.085y=20.085+2=22.085
At Point
Look at the graph
The slope of the tangent is equal to the slope of the given curve.
The slope of the given curve is-
dy/dx=2xe^(x^2-1)+2dydx=2xex2−1+2
At
dy/dx=2(2)(2.71828^3)+2dydx=2(2)(2.718283)+2
dy/dx=4xx 20.085+2dydx=4×20.085+2
dy/dx=82.34dydx=82.34
The slope of the tangent
The slope of the normal is
The equation of the Normal is -
y=m_2x+cy=m2x+c
22.085=-1/82.34(2)+c22.085=−182.34(2)+c
22.085+1/82.34=c22.085+182.34=c
22.09=c22.09=c
y=-1/82.34x+22.09y=−182.34x+22.09