What is the slope of the line normal to the tangent line of f(x) = sec^2x-sin^2x f(x)=sec2xsin2x at x= (pi)/12 x=π12?

1 Answer
Jun 23, 2018

y=(-74/11-128sqrt(3)/33)x+15/2-15/4sqrt(3)+37/66*pi+32/99*pi*sqrt(3)y=(7411128333)x+1521543+3766π+3299π3

Explanation:

f'(x)=2sec^2(x)tan(x)-2sin(x)cos(x)

f'(pi/12)=111/2-32sqrt(3)
so the slope of the normal line is given by

-1/(111/2-32sqrt(3))=-74/11-128sqrt(3)/33
f(pi/12)=15/8*(sqrt(3)-1)^2