What is the slope of the line normal to the tangent line of f(x) = sec^2x-xcos(x-pi/4) at x= (7pi)/4 ?

1 Answer
Jun 10, 2016

The reqd. slope = 4/((16+7pi).

Explanation:

f(x)=sec^2x-xcos(x-pi/4)
:.f'(x)=2*secx*secx*tanx-{x*(-sin(x-pi/4))+cos(x-pi/4)} = 2sec^2x*tanx+x*sin(x-pi/4)-cos(x-pi/4)

But f'(x) is the slope tangent (tgt.) line at (x, f(x))
Hence, slope of the tangent line at x=(7pi)/4 is
f'((7pi)/4)=2sec^2((7pi)/4)tan((7pi)/4)+((7pi)/4)sin((7pi)/4-pi/4)-cos((7pi)/4-pi/4)=2*2*(-1)+((7pi)/4)*(-1)-0=-4-(7pi)/4=-(16+7pi)/4
As normal is perpendicular to tgt. line, the reqd. slope = 4/((16+7pi).