What is the slope of the line normal to the tangent line of f(x) = secx-cos^2(x-pi) f(x)=secxcos2(xπ) at x= (pi)/12 x=π12?

1 Answer
Dec 21, 2017

3sqrt(6)-5sqrt(2)+1/23652+12

Explanation:

the answer is f'(pi/12) where f'(x) is the derivative of f(x)

first simplify the -(cos(x-pi))^2 part:
=-(-cos(x))^2 proof
=-(cosx)^2

so f(x)=secx-(cosx)^2
f'(x)=d/dx(secx)-d/dx((cosx)^2)
f'(x)=secxtanx-(2cosx*d/dx(cosx)) (secx derivative and chain rule)
f'(x)=secxtanx-2cosx(-sinx) (cosx derivative)
f'(x)=secxtanx+2sinxcosx
f'(x)=secxtanx+sin(2x) (double angle formula for sin(2x))

now evaluate at x=pi/12
f'(pi/12)=sec(pi/12)tan(pi/12)+sin(2*(pi/12))

use a calculator, memorize these, or use this table to evaluate:

f'(pi/12)=(sqrt(6)-sqrt(2))*(2-sqrt(3))+sin(pi/6)
f'(pi/12)=2sqrt(6)-2sqrt(2)-sqrt(18)+sqrt(6)+1/2
f'(pi/12)=3sqrt(6)-2sqrt(2)-3sqrt(2)+1/2
f'(pi/12)=3sqrt(6)-5sqrt(2)+1/2