log_7 (x+3) + log_7 (x-5) =1log7(x+3)+log7(x−5)=1
Applying log_n a + log_n b = log_n ablogna+lognb=lognab
log_7 (x+3)(x-5) = 1log7(x+3)(x−5)=1
Now, 1 = log_7 71=log77
:. log_7 (x+3)(x-5) = log_7 7
If log_n a = log_n b then a=b
Thus, (x+3)(x-5) =7
x^2 -2x-15 =7
x^2-2x-22 =0
Apply quadratic formula
x =(2+-sqrt(4+4xx22))/2
= 1+- sqrt92/2 =1+- (2sqrt23)/2
= 1+-sqrt23
Remember that log_n (x) is undefined for x<0
Then, since sqrt23>1, we can reject the negative result.
NB: since 1+sqrt23>5, we can retain the positive result
:. x=1+sqrt23 approx 5.7958