What is the solution set of log_7 (x+3) + log_ 7 (x-5) = 1log7(x+3)+log7(x5)=1?

1 Answer
Mar 22, 2018

x = 1+sqrt23 approx 5.7958x=1+235.7958

Explanation:

log_7 (x+3) + log_7 (x-5) =1log7(x+3)+log7(x5)=1

Applying log_n a + log_n b = log_n ablogna+lognb=lognab

log_7 (x+3)(x-5) = 1log7(x+3)(x5)=1

Now, 1 = log_7 71=log77

:. log_7 (x+3)(x-5) = log_7 7

If log_n a = log_n b then a=b

Thus, (x+3)(x-5) =7

x^2 -2x-15 =7

x^2-2x-22 =0

Apply quadratic formula

x =(2+-sqrt(4+4xx22))/2

= 1+- sqrt92/2 =1+- (2sqrt23)/2

= 1+-sqrt23

Remember that log_n (x) is undefined for x<0

Then, since sqrt23>1, we can reject the negative result.

NB: since 1+sqrt23>5, we can retain the positive result

:. x=1+sqrt23 approx 5.7958