#log_7 (x+3) + log_7 (x-5) =1#
Applying #log_n a + log_n b = log_n ab#
#log_7 (x+3)(x-5) = 1#
Now, # 1 = log_7 7#
#:. log_7 (x+3)(x-5) = log_7 7#
If #log_n a = log_n b# then #a=b#
Thus, #(x+3)(x-5) =7#
#x^2 -2x-15 =7#
#x^2-2x-22 =0#
Apply quadratic formula
#x =(2+-sqrt(4+4xx22))/2#
#= 1+- sqrt92/2 =1+- (2sqrt23)/2#
#= 1+-sqrt23#
Remember that #log_n (x)# is undefined for #x<0#
Then, since #sqrt23>1#, we can reject the negative result.
NB: since #1+sqrt23>5#, we can retain the positive result
#:. x=1+sqrt23 approx 5.7958#